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All existing quantizatioha methods require a Lagrangian (or Hamiltonian) 
formulation for classical systems, while many classical systems do not possess 
Lagrangian descriptions (Helmholtz condition) and cannot be quantized by 
existing quantization methods. To make more classical systems quantizable, a 
new quantization procedure is proposed that skips the intermediate steps of 
Lagrangian description and starts directly from classical motion equations. 

1. INTRODUCTION 

Up to now, all quantization procedures, including canonical quantiza- 
tion, path integral quantization, and geometric quantization (which is 
essentially the globalization of the canonical one) have had to start with a 
Lagrangian (or Hamiltonian) description of classical systems. On the other 
hand, a classical system is primarily described by a set of differential equa- 
tions (motion equations). In order to quantize a classical system described 
by a set of motion equations, all existing quantization methods have had 
first to establish a Lagrangian (or Hamiltonian) formulation for the system 
and then can go forward to perform quantization. 

Some points need to be emphasized: 

1. Not any given set of motion equations describing a meaningful 
classical system can be described by some Lagrangians (or Hamiltonians). 
The conditions for the existence of a Lagrangian description of a classical 
system are commonly called Helmholtz conditions, which have long been 
investigated (Helmholtz, 1887; Douglas, 1941; Currie and Saletan, 1966; 
Havas, 1973; Santilli, 1978; Sarlet, 1982; Pardo, 1989). Under the 
circumstance that no Lagrangian exists for a given classical system, no 
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existing quantization methods can be used to get the corresponding 
quantum theory of the system. In order to make more classical systems 
quantizable, we are motivated to search for a new quantization procedure 
which does not depend on Lagrangian (or Hamiltonian) formulations. 

2. When there does exist some Lagrangian description for a given 
classical system, there generally exist many equivalent Lagrangians that 
lead to the same set of classical motion equations but different quantum 
mechanics. This kind of ambiguity in conventional quantizations has been 
discussed by many workers (Hojman and Harleston, 1981; Henneaux, 
1982a, b; Hojman and Shepley, 1991). In order to avoid such ambiguity, we 
are motivated again to establish a new quantization procedure that skips 
the intermediate step of Lagrangian description and starts directly from the 
primary motion equations. 

Historically, Feynman's path integral quantization could be regarded 
as the first successful attemption to reduce the intermediate steps of the 
previous quantization method. The original quantization is the conven- 
tional canonical one. According to the canonical quantization procedure, 
to quantize a classical system given by a set of motion equations, one has 
to first find a suitable Lagrangian for the system, and then transfer to the 
Hamiltonian formulation through an appropriate Legendre transformation. 
Only after this step can the conventional canonical quantization be applied 
to get the corresponding quantum mechanics. As is well known, the well- 
definedness of the Legendre transformation is doubtful under many general 
situations such as constrained systems, and as a result, the conventional 
canonical quantization proved to be troublesome for those cases. Feyn- 
man's path integration skips the intermediate step of the Hamiltonian 
formulation of classical systems and starts directly from the Lagrangian 
formulation. Feynman succeeded not only in the field of applications, but 
also in providing deeper understanding of quantization. 

Given the points just mentioned and the appreciation of Feynman's 
success, we are strongly stimulated to find a quantization method that 
skips not only the intermediate step of the Hamiltonian formulation, 
but also the step of the Lagrangian formulation. In other words, we will 
try to establish a new quantization method that starts directly from 
classical motion equations [e.g., in addition to Feynman, Wigner (1950), 
Okubo (1980), and Dyson (1990) also showed interest in this aspect of 
quantization]. 

In order to establish such a new quantization method, we will 
investigate the existing quantization rules, which are applicable for limited 
cases as indicated previously, and then abstract some essential rules that 
can be used most generally. 
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This paper is basically a constructive one and examines the domain of 
existing quantization formulations. Therefore, under the circumstance that 
the logical and physical pictures behind the constructions are reasonable, 
whether the final results are correct or true for describing nature has to be 
determined experimentally. 

We begin with a careful review of existing quantization prescriptions. 

2. REVIEW OF EXISTING QUANTIZATION METHODS 

Since it is most concise to proceed with geometric terminology, let us 
begin with geometric quantization, which is essentially the globalization 
of the conventional canonical quantization procedure (Kostant, 1970; 
Blattner, 1977; Sternberg and Wolf, 1978; Woodhouse, 1980; Sniatycki, 
1980). 

A regular classical system is described by a set of second-order 
differential equations as follows: 

(ta= fa(q, gl), a= 1, 2 . . . . .  n (2.1) 

or geometrically by a vector field T defined over phase space TQ (Q is the 
configuration space of the system and TQ is tangent bundle of Q): 

0 
T =  4a ~-~q~ + f~(q, 0) ~0--~ (2.2) 

For convenience, we will use the notation v a = 0a and equations (2.1) 
and (2.2) can be rewritten as 

~a=L(q ,  v) 

T=va o@ + fa(q, v ) - -  

(2.1a) 

(2.2a) 
Ova 

The Lagrangian formulation of classical systems is essentially to find 
a symplectic structure col such that the vector field T is a Hamiltonian 
vector field under the symplectic structure co L, namely, 

L-Wrco L = 0 (2.3) 

For some given T, there exists no such symplectic form col obeying 
(2.3), which means the given classical system possesses no Lagrangian 
description on the phase space TQ. This fact is related to the Helmholtz 
conditions that have been investigated by many authors (Helmholtz, 1887; 
Douglas, 1941; Currie and Saletan, 1966; Havas, 1973; Santilli, 1978; 
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Sarlet, 1982; Pardo, 1989). On the other hand, for some vector field T, 
there may exist many different symplectic structures co, m'i . . . .  all of them 
satisfying (2.3). This means the given classical system has many different 
but classically equivalent Lagrangian descriptions (Hojman and Harleston, 
1981; Henneaux, 1982a, b; Hojman and Shepley, 1991). 

The Hamiltonian formulation of classical systems can be obtained by 
making a Legendre map, 

PL: TQ--+ T*Q (2.4) 

such that the symplectic form co L on TQ is mapped to the canonical 
symplectic 2-form co on T*Q and the vector field T on TQ is mapped 
to ~'= pL(T) on T*Q. 

For regular systems, it has been proved by Abraham and Marsden 
(1978) that the above Legendre transformation is a local diffeomorphism 
and therefore, for regular systems, the Hamiltonian formulation is at least 
locally equivalent to the Lagrangian formulation. [-If the above statement 
is also globally valid, the systems are generally called hyperregular 
(Abraham and Marsden, 1978).] 

Under the conditions that a given classical system possesses a 
Lagrangian description and the Legendre transformation has been 
smoothly applied, the system has a Hamilton formulation (T'Q, H), where 
the vector field ]" representing the flows in T*Q is a Hamiltonian vector 
field of a function H under the canonical symplectic structure co of T*Q. 

In order to quantize the system, geometric quantization first con- 
structs a Hermite line bundle E with connection over the base manifold 
T*Q. The set of square-integrable smooth sections 0 of the bundle E 
would be taken as some Hilbert space ~ for the corresponding quantum 
system. Then, by appropriately lifting to the bundle the vector field 
Te T(T*Q) as T~e T(E) which preserves the connection on the bundle, 
the evolution of quantum states (equivalent to the smooth sections of the 
bundle E) is then defined as 

= ~T0 (2.5) 

Note that the vector field ]'* preserving connection on bundle E is not 
the horizontal lifting of T. In fact, 

~T = hor(T*) + ver(~ T) (2.6) 

the horizontal part of ~-T is the horizontal lifting of 7", while the vertical 
part of T T is to be determined by the connection-preserving condition as 
follows: 

~ A  = 0 (2.7) 

where A represents the connection 1-form on bundle E. 
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At this stage, we have only completed the prequantization procedure 
in geometric quantization, since the smooth sections ~ generally depend 
simultaneously on coordinates and momenta, which disobey the well- 
accepted Heisenberg uncertainty principle and cannot be directly used as 
quantum wave functions. 

To resolve this problem, one has to reduce the dependent variables by 
half. In geometric quantization, this is achieved by introducing some 
polarization structure P on the T'Q,  and only those polarized sections r 
obeying 

Vxr = O, VX~ V(T*Q, P) (2.8) 

are chosen to construct the quantum Hilbert space ~p. 
If 7" is a vector field preserving polarization P, i.e., 5e~P = 0, then TT~b 

remains a polarized section and the evolution of the quantum state is still 
defined by 

= ]'Tr (2.9) 

If T does not preserve polarization P, then ]'~0~ will no longer be a 
polarized section and does not belong to the ~p. In this case, some 
appropriate map (also called a pairing) p has to be defined to pull T*r 
back to the ~ :  

p: T+~b ~ e ~ p  (2.10) 

The evolution of quantum states wiil be given as 

= ~ = p(TT~b) (2.11) 

We have outlined the geometric quantization. The explicit expressions 
and some subtle mathematical structures concerning the well-definedness of 
the above formal equations can be found in several comprehensive books 
(Kostant, 1970; Blattner, Sternberg and Wolf, 1978; Woodhouse, 1980; 
Sniatycki, 1980). 

As indicated in the Introduction, our goal of reviewing existing quan- 
tization prescriptions is to modify them and propose a new scheme of 
quantization that can be applied to more general situations. So, let us 
begin our careful examination on the geometric quantization introduced 
above. 

There are several key rules in geometric quantization that are essen- 
tially artificial: the first one is the requirement that the vector field ~T lifted 
from T should preserve the connection on the bundle E; the second one is 
that the evolution of quantum states is determined by (2.5); the third one 
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is the introducing of a polarization mechanism to make the whole theory 
coincide with the Heisenberg principle. 

Now let us try to seek out the meaning and background of these rules 
to see whether they are well supported or logically reasonable. 

As mentioned previously, geometric quantization begins with the 
Hamilton formulation of classical systems; the vector field T is the 
Hamilton vector field of some Hamiltonian and satisfies 5r = 0, which 
means T preserves the canonical symplectic structure of T*Q. As we will 
see, the requirement that ~T should preserve the connection on the bundle 
is essentially related with the Dirac quantization condition which plays a 
key role in geometric quantization. The condition states that 

if f - - . f  and g ~  ~, then {f, g} --. ihEf,, fi,] 

where f means the operator corresponding to classical function f, {., �9 } is 
the Poisson bracket, and [., -] is the commutator. 

According to the condition, the curvature form of the bundle has to be 
proportional to the symplectic form on T*Q. As a result, ~ f tA = 0 results 
naturally from ~r = 0 if the Dirac quantization condition is to be obeyed 
[see Woodhouse (1980) for more details]. 

However, as pointed out by many authors, the Dirac quantization 
condition cannot be generally valid. (In many cases, the condition will lead 
to contradictions.) In fact, the quantum operators derived from geometric 
quantization themselves generally do not obey Dirac quantization condi- 
tion (Woodhouse, 1980; Bao and Zhu, 1992a, b). With these observations 
in mind, why does one need at the beginning a condition that one never 
expects to hold afterward? [I would like to point out that in his original 
work Dirac (1964) did not emphasize the condition named after him.] 
Furthermore, when ~ has no Hamilton description, namely, 5r ~0, 
there will be no solution for 7 "T from (2.7) at all. In this case, geometric 
quantization cannot be performed further to get any result. 

Therefore, we naturally argue that the first rule used in geometric 
quantization, which is closely related to the Dirac quantization condition, 
should be modified somewhat to allow more classical systems to be 
quantizable. What should the new rule be like? In other words, what new 
condition should be adopted to determine the vector field ~T to be lifted 
from T? An answer to this question is a constructive one and will be given 
in the next section. 

As for the second rule given by (2.5), it is related to the Copenhagen 
interpretation of quantum mechanics, which requires that the quantum 
evolution equation be first-order in the time derivative (Bohm, 1954). We 
will keep the Copenhagen interpretation and so we will maintain this rule 
in the forthcoming constructions of a new quantization procedure. 
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Now, let us turn to the third rule--the introduction of polarization 
and the pairing mechanism. As one can see, the only purpose of these pro- 
cedures is to make the theory obey the Heisenberg uncertainty principle, 
while the main strategy is to select those polarized sections as physical 
wave functions. However, in the author's opinion, this method adopted by 
geometric quantization is not absolutely necessary. Actually, in order to 
coincide with the Heisenberg principle, the physical wave functions can be 
found simply by integrating out momentum variables in the functions 
~9(q, p) corresponding to the smooth sections of bundle E over T*Q. 
Namely, 

(~(q) = f dp. tp(q, p) (2.12) 

Obviously, there exist many functions O(q, p) whose integration over 
p leads to the same result ~b(q). We will denote the set of these functions 
a s  

~={~b(q, p) f dp.~b(q,p)=(~(q)} (2.13) 

It seems to the author that, in the Schr6dinger representation, it is 
much more convenient to adopt this simple prescription and avoid using 
the complicated polarization mechanism. 

As a conclusion, we have examined existing quantization methods 
mainly in the geometric framework. Some artificial rules behind the quan- 
tization method have been carefully discussed and possible modifications 
have been suggested. In the next section, we will try to construct a new 
quantization prescription with the ideas developed in this section, which is 
intended to be applicable to more general classical systems including those 
without a Lagrangian formulation. 

3. CONSTRUCTION OF NEW QUANTIZATION PROCEDURE 

As mentioned previously, a general classical system is primarily 
described by a set of motion equations. Whether the system possesses a 
Lagrangian (or Hamiltonian) formulation is not guaranteed, but is subject 
to the Helmholtz conditions. In order to quantize those systems disobeying 
the Helmholtz conditions, one need a new quantization procedure that can 
skip the intermediate processes and involve only the original motion 
equations. 
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To be concrete, we will still concentrate on regular systems described 
by the following motion equations: 

fJ a= f,(q, V) (3.1) 

or equivalently by the vector field T over the phase space TQ, 

C C (3.2) T= Va~q + fu(q, v) Ov---~ 

With the ideas developed in the last section, the quantum evolution 
equation of physical wave functions ~b(q) can be constructed as follows: 

First, considering the Heisenberg principle, we employ (2.14) and 
express physical wave functions as 

(~(q) = f dnva . qs(q, v) (3.3) 

where n is the dimension of configuration space Q. 
The time evolution of ~b(q) is obviously 

~(q) = I dnva" (b(q, v) (3.4) 

Then we make use of (2.5), which is to be maintained as discussed in 
the previous section, 

~(q, v)= TTO(q, v) (3.5) 

where T t is some appropriate vector field lifted from the original T. Since 
we have argued that the Dirac condition has to be given up, the vertical 
part of T t is unknown and will be determined by some other way to be 
investigated later. 

According to equations (3.4) and (3.5), we can have the following 
formal equation for the quantum evolution of physical wavefunctions: 

~(q) = f dnva �9 T~p(q, v) (3.6) 

where 
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Now, before we undertake any concrete construction of T ~, let us note 
that an important distinction exists between nonrelativistic classical 
description of dynamical systems and the quantum version. To see this 
point, we discuss a simple case of a conservative system. 

The classical motion equations for the system are 

1)a = - - - -  V(q) (3.8) 
~ q a  

which may be described equivalently as 

mli~a- V~(q) with V,(q)=m~ V(q) (3.9a) ~qa 

or 

m20 a - V2(q) with V2(q)=m2V(q) (3.9b) ~qa 

Therefore, from the motion equations (3.8), we cannot distinguish the 
cases (I) that the mass of the particle is 1 and the conservative potential is 
Vl(q), or (II) the mass of the particle is m2 and the conservative potential 
is V2(q). 

However, in quantum mechanics, the situation is quite different. The 
Schr6dinger equation for case I is 

/ / --  • 2V2 
ih~=~-~ml + Vl(q)) ~b (3.10a) 

and for case II is 

[-h2V2 ) ml[-h2V2 m~ ) 
ml 

(3.10b) 

In contrast to the fact that (3.9a) and (3.9b) are dynamically equiv- 
alent, equations (3.10a) and (3.10b) have different quantum dynamical 
behaviors. In other words, cases I and II are distinguishable in quantum 
theory. 

The key point of why nonrelativistic classical mechanics (excluding 
gravity) differs from quantum mechanics is that there exists a universal 
constant h in quantum theory which disallows any rescaling of the mass of 
particles. Similar situations occur in relativistic theory and gravity theory, 
where other universal constants, c (speed of light) and G (gravitational 
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constant), exist. Therefore, in these theories, the mass must be considered 
as a definite property of a particle, which cannot be mixed up with environ- 
mental factors. As a result, for nonrelativistic dynamics, the mass of a 
particle seems to have to be put into the quantization procedure by hand. 
The question is, at what stage of quantization should we insert the concept 
of the mass of a particle? 

Let us first notice that equations (3.10a) and (3.10b) can be written in 
the following unified form: 

where V(q) is the function given in the classical motion equations (3.8) and 
h,,=h/m. By substituting hmx=h/ml and h,,,2=h/m 2 into (3.11), one can 
easily regain equations (3.10a) and (3.10b). 

The above fact may be regarded as just a formal transformation. But 
a more interesting interpretation could be achieved by regarding the 
parameter h,~ in equation (3.11) as the "quanta" of the particle, repre- 
senting the sensitivity of the particle to quantum phenomena. Different par- 
ticles may have different quantum sensitivities and they can be determined 
through experiments. 

In this way, we actually do not need the concept of mass beforehand 
in the theoretical structure of quantum theory. Alternatively, the concept 
of mass now turns out as a consequent one. That is, we may define the 
quantity hm/h , which represents the quantum sensitivity of a particle, to be 
a kind of mass mQ that would be best called "nonrelativistic quantum 
mechanical mass." 

That this quantity mQ is equivalent to the gravitational mass mG 
defined in gravity theory is not guaranteed and is a profound problem to 
be settled by further theoretical considerations and experiments. We discuss 
it elsewhere. In the following, we will only keep in mind the concept of the 
quantum sensitivity of a particle which is represented by a quantity h m t o  

be determined by experiments. 
Now, let us return to continue our construction of the new quantiza- 

tion procedure. The quantum evolution equation of physical wave func- 
tions has been formally given in (3.6). In order for it to be expressed in 
familiar Schr6dinger-like form, we would like to select an appropriate 
function ~ in the set o~. Inspired by the famous Wigner (1963, 1983) 
transformation 

t~(q) --. W(q, p) = (1/2~h) f dq' exp(ipq'/h). O*(q + q'/2) ~k(q - q'/2) (3.12) 
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we adopt the following similar choice: 

~b(q, v) = exp(iqav~/hm). ~(v) (3.13) 

where h m is the quantity defined previously and ~(v) is the Fourier trans- 
formation of ~b(q), 

= (27z/hm)" f d"q'~. ~b(q') exp(--iVbV'b/hm) (3.14) 

One can easily prove that the above r v) is a function in the set 
corresponding to the physical wave function ~b. Actually, 

f d"va �9 ~(q, v) = (2n/hm) n f dnva dnq'b. (b(q') exp[iva(qa -- q'a)/hm] 

= f dnq~ . (J(q'). 3(qa - q'a) = ~(q) (3.15) 

Now, we will determine the vector field T ~ which represents the essen- 
tial dynamics of the quantum world. Like many events in the history of 
scientific research, there seems no first principle that can give us the exact 
form of T *. The best one can do is to make some logical postulation which 
will lead to reasonable results comparable with experiments. After several 
trials, we think that the following construction for T T might be an 
acceptable one: 

- 1  ~ i : 
TT= �9 ( i r d q ~ ) ~ q + ~ m  j d~qa.( irdva) (3.16) 

2 

where i r  is the inner product associated with the original vector field T. 
This form of T r is adopted since it is very simple and wilt give the well- 
accepted Schr6dinger equation for conservative systems. (See Example 1 in 
the next section.) 

As a result, we have established a new quantization procedure that 
skips the Lagrangian formulation. With combined use of equations (3.16), 
(3.13), and (3.6), any regular classical system given by (3.1) can be quan- 
tized, no matter whether it possesses a Lagrangian or a Hamiltonian for- 
mulation. In the next section, we will demonstrate the new quantization 
procedure proposed in this section with nontrivial examples. 

4. E X A M P L E S  A N D  D I S C U S S I O N S  

This section is devoted to two examples. The first example is about 
conservative systems. Actually, the general form of the vector field T T given 
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in the last section in (3.16) is proposed in order to regain the well-accepted 
Schr6dinger equation for conservative systems. The second example will 
discuss a classical system that has no Lagrangian formulation and cannot 
be quantized via previous quantization methods. 

Example 1. Let us consider a conservative system described by the 
following motion equation: 

fi V(q) 
0 = f ( q )  = - - -  (4.1) 

c3q 

In vector field form, the systems are equivalently described by 

~q 0 (4.2) T = v + f(q) 87 

According to (3.16), the lifted vector field T r can be evaluated as 

- 1  O i 
T T = ---2- v ~q - hm V(q) (4.3) 

Henceforth, the quantum evolution for the systems can be derived from 
(3.6) and (4.3) as follows: 

- 1  a~, i 
~= f dr. TT~(q, v)=  ~ -  f dv .v O--q-h--'~m V(q)~(q) (4.4) 

Now, substituting the expansion (3.13) into the above equation, we 
will get 

O~b i (iqv) fdv.v~=fav.~vexp ~tv) ~k hmJ 

hm 8 2 f  (iqv) hm82r (4.5) 
= - 7  dv. exp q{(v) - - t Oq 2 ~ t Oq 2 

As a result, equation (4.4) becomes 

~__ -- lhm 420 i 
2 -  i ~q2 h-~ V(q)~(q) (4.6) 

or in the more familiar form 

ihm~ - - h 2  02~) 
2 8q 2 V(q)~(q) (4.7) 
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which is exactly the Schr6dinger equation for conservative systems. [See 
equation (3.11) for the mass problem.] 

Example 2. Now we consider a two-dimensional classical system 
described by the following equations: 

5 7 + p = 0  and p + y = 0  (4.8) 

According to Douglas (1941) and Hojman and Shepley (1991), this system 
does not obey the Helmholtz condition and has no Lagrangian formulation 
in phase space. Previous quantization methods have to regard this system 
as nonquantizable. However, we will see how this system can be quantized 
under our new quantization procedure. 

For convenience, let us adopt the following notations: 

ql = x, q2 = Y, vl = 2, v2 = 

The vector field T representing the system is 

T= (vl ~ (4.9) 

Substituting (4.9) into (3.16), we can easily evaluate the lifted vector 
field T T by straightforward calculations, 

TT= 21(Vl q1+V2 q2)-- m(qlv2+ (4.10, 

Now, according to (3.6) and making use of the choice (3.13), the 
quantum evolution equation for the system can be derived as follows: 

h 2 / ~ 2  c~ 2 )  ~b . 1 
ih,,,~= - ~-~-~q21+-~q ~ qS-ih~q1~q2+~q22(~ (4.11) 

5. CONCLUSION 

As a final remark, we have proposed a new quantization procedure 
that skips the Lagrangian formulation and therefore makes more classical 
systems quantizable. Whether this method is a correct one is subject to 
further examination both theoretically and experimentally. Though the 
author believes that the formal form of the quantum evolution equation 
(3.6) is well supported, the concrete form of the lifted vector field T T 
in (3.16) might be possibly modified in some way, since it has been 
constructed only to regain the well-accepted Schr6dinger equations. 
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F u r t h e r m o r e ,  to general ize the discussions  of this p a p e r  to s ingular  
(cons t ra ined)  systems will be interest ing.  Ano the r  i m p o r t a n t  po in t  to  
invest igate  fur ther  is the p rob l em re la ted  with the concept  of mass  as 
ind ica ted  in Sect ion 3. 
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